One key step in performing quantum machine learning (QML) on noisy intermediate-scale quantum (NISQ) devices is the dimension reduction of the input data prior to their encoding. Traditional principle component analysis (PCA) and neural networks have been used to perform this task; however, the classical and quantum layers are usually trained separately. A framework that allows for a better integration of the two key components is thus highly desirable. Here we introduce a hybrid model combining the quantum-inspired tensor networks (TN) and the variational quantum circuits (VQC) to perform supervised learning tasks, which allows for an end-to-end training. We show that a matrix product state based TN with low bond dimensions performs better than PCA as a feature extractor to compress data for the input of VQCs in the binary classification of MNIST dataset. The architecture is highly adaptable and can easily incorporate extra quantum resource when available.
翻译:使用量子机学习(QML)在噪音中等尺度量子(NISQ)设备方面的一个关键步骤是,输入数据在编码之前的尺寸减少。传统主要成分分析(PCA)和神经网络已经用于执行这项任务;然而,古典和量子层通常是分开培训的。因此,非常需要一种能够更好地整合这两个关键成分的框架。在这里,我们引入了一个混合模型,将量子驱动的感应网络(TN)和可变量子电路(VQC)结合起来,以进行监督的学习任务,从而进行端到端的培训。我们显示,基于低保证度的TN的矩阵产品状态比五氯苯甲醚更好地作为特征提取器来压缩VQC在MNIST数据集二元分类中输入的数据。该结构非常适应性强,在具备额外量子资源时很容易纳入。