Attempts to apply Neural Networks (NN) to a wide range of research problems have been ubiquitous and plentiful in recent literature. Particularly, the use of deep NNs for understanding complex physical and chemical phenomena has opened a new niche of science where the analysis tools from Machine Learning (ML) are combined with the computational concepts of the natural sciences. Reports from this unification of ML have presented evidence that NNs can learn classical Hamiltonian mechanics. This application of NNs to classical physics and its results motivate the following question: Can NNs be endowed with inductive biases through observation as means to provide insights into quantum phenomena? In this work, this question is addressed by investigating possible approximations for reconstructing the Hamiltonian of a quantum system in an unsupervised manner by using only limited information obtained from the system's probability distribution.


翻译:在最近的文献中,试图将神经网络(NN)应用于一系列广泛的研究问题已无处不在,而且范围很广。特别是,利用深层次的NNP来了解复杂的物理和化学现象已经开辟了一个新的科学领域,从机器学习(ML)的分析工具与自然科学的计算概念相结合。ML的统一报告提供了证据,证明NN可以学习古典汉密尔顿力学。NNP对古典物理学的这种应用及其结果促使人们提出下列问题:NNN能否通过观察获得感化偏差,作为了解量子现象的手段?在这项工作中,通过只利用从系统概率分布中获得的有限信息,调查在不受监督的情况下重建量子系统汉密尔顿的可能近似值来解决这个问题。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
4+阅读 · 2018年12月3日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
4+阅读 · 2018年12月3日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
4+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员