Partial membership models, or mixed membership models, are a flexible unsupervised learning method that allows each observation to belong to multiple clusters. In this paper, we propose a Bayesian partial membership model for functional data. By using the multivariate Karhunen-Lo\`eve theorem, we are able to derive a scalable representation of Gaussian processes that maintains data-driven learning of the covariance structure. Within this framework, we establish conditional posterior consistency given a known feature allocation matrix. Compared to previous work on partial membership models, our proposal allows for increased modeling flexibility, with the benefit of a directly interpretable mean and covariance structure. Our work is motivated by studies in functional brain imaging through electroencephalography (EEG) of children with autism spectrum disorder (ASD). In this context, our work formalizes the clinical notion of "spectrum" in terms of feature membership probabilities.
翻译:部分会籍模式,或混合会籍模式,是一种灵活而不受监督的学习方法,允许每个观察都属于多个组群。在本文中,我们提出一个功能数据巴伊西亚部分会籍模式。通过多变量Karhunen-Lo ⁇ ⁇ éeve 理论,我们可以得出一个可扩缩的Gaussian进程代表,以维持数据驱动的对共变结构的学习。在此框架内,我们根据已知的特征分配矩阵,建立有条件的后继一致性。与以往关于部分会籍模式的工作相比,我们的提案允许增加模型的灵活性,并受益于可直接解释的平均值和共变结构。我们的工作受到通过自闭症谱系障碍儿童电脑图学(EEEEG)进行功能脑成像研究的驱动。在这方面,我们的工作将特征成员概率的“特征特征”的临床概念正式化。