Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving large sparse system of equations. However, how to build/check restriction and prolongation operators in practical of AMG methods for nonsymmetric {\em sparse} systems is still an interesting open question [Brezina, Manteuffel, McCormick, Runge, and Sanders, SIAM J. Sci. Comput. (2010); Manteuffel and Southworth, SIAM J. Sci. Comput. (2019)]. This paper deals with the block-structured dense and Toeplitz-like-plus-Cross systems, including {\em nonsymmetric} indefinite, symmetric positive definite (SPD), arising from nonlocal diffusion problem and peridynamic problem. The simple (traditional) restriction operator and prolongation operator are employed in order to handle such block-structured dense and Toeplitz-like-plus-Cross systems, which is convenient and efficient when employing a fast AMG. We focus our efforts on providing the detailed proof of the convergence of the two-grid method for such SPD situations. The numerical experiments are performed in order to verify the convergence with a computational cost of only $\mathcal{O}(N \mbox{log} N)$ arithmetic operations, by using few fast Fourier transforms, where $N$ is the number of the grid points. To the best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-Cross linear systems solved by means of a fast AMG.
翻译:电磁多格(AMG)是解决大量稀有方程式系统的最有效迭代方法之一。然而,如何建立/检查用于非对称 {emspresh} 系统的不对称性系统AMG方法的实际应用限制和延长操作员仍是一个有趣的未决问题[Brezina、Manteffel、McCormick、Runge和Sanders、SIAM J.Sci.Compuut.(2010);Manteffel和Southworth,SIAM J.Sci.Sci.Sci.Comput. (2019) 。本文涉及块状结构稠密和托普利茨(Teplitz-类似-cross)的系统,包括 含非对称非对称的对称肯定性确定(SPDD), 产生于非局部扩散问题和半动力问题。 简单(传统的) 限制操作员和延长操作员(Teeplitz-slock-lock-cross) 系统,在使用快速的AMGMG时是方便和高效的。我们的努力集中在提供关于双电离值的递变法的O的系统最接近的统化的统化的连接, 以快速计算方法,在快速计算中进行快速的计算。在快速的计算中,在快速的Odrodal-rmaxxxxxxxxxxxxx的计算中进行。