Universal quantum computation requires the implementation of a logical non-Clifford gate. In this paper, we characterize all stabilizer codes whose code subspaces are preserved under physical $T$ and $T^{-1}$ gates. For example, this could enable magic state distillation with non-CSS codes and, thus, provide better parameters than CSS-based protocols. However, among non-degenerate stabilizer codes that support transversal $T$, we prove that CSS codes are optimal. We also show that triorthogonal codes are, essentially, the only family of CSS codes that realize logical transversal $T$ via physical transversal $T$. Using our algebraic approach, we reveal new purely-classical coding problems that are intimately related to the realization of logical operations via transversal $T$. Decreasing monomial codes are also used to construct a code that realizes logical CCZ. Finally, we use Ax's theorem to characterize the logical operation realized on a family of quantum Reed-Muller codes. This result is generalized to finer angle $Z$-rotations in arXiv:1910.09333.


翻译:通用量子计算需要执行符合逻辑的非 Clifford 门。 在本文中, 我们描述所有稳定器代码, 其代码子空间保存在实际$T$和$T$$1美元门下的所有稳定器代码。 例如, 这可以使魔法状态以非 CSS 代码进行蒸馏, 从而提供比 CSS 协议更好的参数。 但是, 在支持跨转 $T 的非脱氧稳定器代码中, 我们证明 CSS 代码是最佳的。 我们还显示, 三角代码实质上是 CSS 代码中通过物理跨转$T$实现逻辑跨转$T的唯一组合。 使用我们的升格法, 我们揭示了与通过跨转$T$实现逻辑操作密切相关的纯古典编码问题。 解析单调码也用来构建一个能实现逻辑 CCZ的代码。 最后, 我们使用 Ax 的理论来描述在量子Red- Muller 代码组中实现逻辑操作的逻辑操作。 其结果是在 a- cred- gal- gal- offer $X19 中, 将结果普遍化成 fal- fal 93- $X19。

0
下载
关闭预览

相关内容

层叠样式表(Cascading Style Sheet)是一种用来为结构化文档(如 HTML 文档或 XML 应用)添加样式(字体、间距和颜色等)的计算机语言。
专知会员服务
32+阅读 · 2021年6月12日
【2020新书】Web应用安全,331页pdf
专知会员服务
24+阅读 · 2020年10月24日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
62+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
【2020新书】Web应用安全,331页pdf
专知会员服务
24+阅读 · 2020年10月24日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
62+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员