Optimal $k$-thresholding algorithms are a class of sparse signal recovery algorithms that overcome the shortcomings of traditional hard thresholding algorithms caused by the oscillation of the residual function. In this paper, we provide a novel theoretical analysis for the data-time tradeoffs of optimal $k$-thresholding algorithms. Both the analysis and numerical results demonstrate that when the number of measurements is small, the algorithms cannot converge; when the number of measurements is suitably large, the number of measurements required for successful recovery has a negative correlation with the number of iterations and the algorithms can achieve linear convergence. Furthermore, the theory presents that the transition point of the number of measurements is on the order of $k \log({en}/{k})$, where $n$ is the dimension of the target signal.
翻译:最佳 $k$ 持有量算法是一种稀有的信号恢复算法,它克服了传统硬阈值算法因剩余函数振荡造成的缺陷。 在本文中,我们对最佳 $k$ 持有量算法的数据-时间取舍提供了新的理论分析。 分析和数字结果都表明,当测量数量小时,算法无法汇合;当测量数量适当大时,成功恢复所需的测量数量与迭代数呈负相关关系,而算法可以实现线性趋同。 此外,理论还表明,测量数量的过渡点在 $ log ({en}/{k}) 左右, 美元是目标信号的维度。