Centrality measures are widely used to assign importance to graph-structured data. Recently, understanding the principles of such measures has attracted a lot of attention. Given that measures are diverse, this research has usually focused on classes of centrality measures. In this work, we provide a different approach by focusing on classes of graphs instead of classes of measures to understand the underlying principles among various measures. More precisely, we study the class of trees. We observe that even in \fix{the} case of trees, there is no consensus on which node should be selected as the most central. To analyze the behavior of centrality measures on trees, we introduce a property of \emph{tree rooting} that states a measure selects one or two adjacent nodes as the most important, and the importance decreases from them in all directions. This property is satisfied by closeness centrality but violated by PageRank. We show that, for several centrality measures that root trees, the comparison of adjacent nodes can be inferred by \emph{potential functions} that assess the quality of trees. We use these functions to give fundamental insights on rooting and derive a characterization explaining why some measure root trees. Moreover, we provide an almost liner-time algorithm to compute the root of a graph by using potential functions. Finally, using a family of potential functions, we show that many ways of tree rooting exist with desirable properties.
翻译:集中度措施被广泛用于赋予图表结构数据的重要性。 最近, 理解此类措施的原则已经吸引了很多注意力。 由于措施多种多样, 这项研究通常侧重于中心度措施的类别。 在这项工作中, 我们提供一种不同的方法, 侧重于图表类别, 而不是各类措施, 以理解各种措施中的基本原则。 更准确地说, 我们研究树木类别。 我们观察到, 即使在树类中, 也没有共识, 哪些节点应该被选为最重要的节点。 为了分析树木中心度措施的行为, 我们引入了 emph{ 树根基} 的属性, 该属性将某措施选择一两个相邻的节点作为最重要的节点, 以及它们在所有方向上的重要性下降。 这个属性由近距离中心点中心点来满足, 但被PageRank 所违反。 我们发现, 一些中心度措施, 根树, 相邻节点的比较可以通过评估树的质量来推断。 我们使用这些函数来提供根基性的基本洞察力, 并用某种直观来解释某种根值的根系特性, 最终显示我们使用某种根系的根系的根值, 。 我们提供了一种直系功能, 显示某种根系的根根系的根系的根系功能, 。