This paper investigates the effectiveness of transfer learning based on Mallows' Cp. We propose a procedure that combines transfer learning with Mallows' Cp (TLCp) and prove that it outperforms the conventional Mallows' Cp criterion in terms of accuracy and stability. Our theoretical results indicate that, for any sample size in the target domain, the proposed TLCp estimator performs better than the Cp estimator by the mean squared error (MSE) metric in the case of orthogonal predictors, provided that i) the dissimilarity between the tasks from source domain and target domain is small, and ii) the procedure parameters (complexity penalties) are tuned according to certain explicit rules. Moreover, we show that our transfer learning framework can be extended to other feature selection criteria, such as the Bayesian information criterion. By analyzing the solution of the orthogonalized Cp, we identify an estimator that asymptotically approximates the solution of the Cp criterion in the case of non-orthogonal predictors. Similar results are obtained for the non-orthogonal TLCp. Finally, simulation studies and applications with real data demonstrate the usefulness of the TLCp scheme.
翻译:本文根据 Mallows 的 Cp 调查转移学习的有效性。 我们提出一个程序, 将转移学习与 Mallows 的 Cp (TLCp) (TLCp) 结合起来, 并证明它在准确性和稳定性方面超过了常规的 Mallows Cp 标准。 我们的理论结果表明, 对于目标域中的任何样本大小, 拟议的 TLCp 估计器比 Cp 平均正方位误差( MSE) 标准在正方位预测器中表现得更好, 前提是 i) 源域和目标域的任务差异很小, 以及 程序参数( 复式弹性处罚) 符合某些明确的规则。 此外, 我们显示, 我们的转移学习框架可以扩大到其他特性选择标准, 如 Bayesian 信息标准。 通过分析正方位误差 Cp 的解决方案, 我们确定一个估计器, 与非软方位预测仪中 Cp 的 Cp 标准的解决方案相近似, 类似的结果与 LC 模拟 LC 和 LC 模型 的 。