This paper argues that the symmetrisability condition in Tyler (1981) is not necessary to establish asymptotic inference procedures for eigenvectors. We establish distribution theory for a Wald and t-test for full-vector and individual coefficient hypotheses, respectively. Our test statistics originate from eigenprojections of non-symmetric matrices. Representing projections as a mapping from the underlying matrix to its spectral data, we find derivatives through analytic perturbation theory. These results demonstrate how the analytic perturbation theory of Sun (1991) is a useful tool in multivariate statistics and are of independent interest. As an application, we define confidence sets for Bonacich centralities estimated from adjacency matrices induced by directed graphs.


翻译:本文认为Tyler(1981)中的对称化条件并非推导出非对称矩阵特征向量渐近推理过程所必需的。我们为完整向量和单个系数假设建立了分布理论,并提出了一个源于非对称矩阵的特征投影的Wald和t-检验。将投影表示为从底层矩阵到其谱数据的映射,我们通过分析摄动理论找到了导数。这些结果展示了Sun(1991)的分析摄动理论是多元统计学中非常有用的工具,具有独立的研究价值。作为一个应用,我们定义了从有向图诱导的邻接矩阵估计的Bonacich中心度的置信区间。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
42+阅读 · 2022年8月20日
专知会员服务
51+阅读 · 2021年5月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关资讯
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员