This paper studies data aggregation in large-scale regularly deployed Internet of Things (IoT) networks, where devices generate synchronized time-triggered traffic (e.g., measurements or updates). The data granularity, in terms of information content and temporal resolution, is parameterized by the sizes of the generated packets and the duty cycle of packet generation. The generated data packets at the devices are aggregated through static terrestrial gateways. Universal frequency reuse is adopted across all gateways and randomized scheduling is utilized for the IoT devices associated with each gateway. Such network model finds applications in environmental sensing, precision agriculture, and geological seismic sensing to name a few. To this end, we develop a novel spatiotemporal mathematical model to characterize the interplay between data granularity, transmission reliability, and delay. The developed model accounts for several IoT design parameters, which include packet sizes, generation duty cycle, devices and gateways spatial densities, transmission rate adaptation, power control, and antenna directivity. For tractable analysis, we propose two accurate approximations, based on the Poisson point process, to characterize the signal-to-interference-plus-noise-ratio (SINR) based transmission reliability. For the delay analysis, we propose a phase-type arrival/departure (PH/PH/1) queueing model that accounts for packet generation, transmission scheduling, and rate-sensitive SINR-based packet departure. The developed model is utilized to obtain the optimal transmission rate for the IoT devices that minimizes delay. The numerical results delineate the joint feasibility range of packet sizes and inter-arrival times for data aggregation and reveal significant gains when deploying directional antennas.
翻译:本文研究大规模定期部署的Tings(IoT)互联网网络的数据汇总。 在网络中,设备能产生同步的时间触发流量(例如测量或更新)。在信息内容和时间分辨率方面,数据颗粒度的参数是根据生成的软件包的大小和数据包生成的值周期。在设备上生成的数据包通过静态地面网关进行汇总。所有网关都采用通用频率再利用,每个网关相关的 IoT 设备都使用随机列表。这种网络模型在环境感测、精确农业以及地质地震感测中找到应用,可以列举几个。为此,我们开发了一个新型的Saotoomal数学模型,以描述数据颗粒度、传输可靠性、传输可靠性和延迟度之间的相互作用。开发了一些IoT设计参数模型的模型,其中包括包尺寸、生成值周期、装置和网关空间密度、传输率适应、电源控制、天线直线定位。对于可感知度的分析,我们建议根据Poson点,使用两种精确的跨时间点,对信号到离流流速度进行数据流方向,以显示信号到流流流流数据流流速度,以显示SIMRILS-ral-ral 版本的流流流数据流流流流流流流流流流流流流流率为基准流率计算计算。