Graph Neural Networks (GNNs) are well-suited for learning on homophilous graphs, i.e., graphs in which edges tend to connect nodes of the same type. Yet, achievement of consistent GNN performance on heterophilous graphs remains an open research problem. Recent works have proposed extensions to standard GNN architectures to improve performance on heterophilous graphs, trading off model simplicity for prediction accuracy. However, these models fail to capture basic graph properties, such as neighborhood label distribution, which are fundamental for learning. In this work, we propose GCN for Heterophily (GCNH), a simple yet effective GNN architecture applicable to both heterophilous and homophilous scenarios. GCNH learns and combines separate representations for a node and its neighbors, using one learned importance coefficient per layer to balance the contributions of center nodes and neighborhoods. We conduct extensive experiments on eight real-world graphs and a set of synthetic graphs with varying degrees of heterophily to demonstrate how the design choices for GCNH lead to a sizable improvement over a vanilla GCN. Moreover, GCNH outperforms state-of-the-art models of much higher complexity on four out of eight benchmarks, while producing comparable results on the remaining datasets. Finally, we discuss and analyze the lower complexity of GCNH, which results in fewer trainable parameters and faster training times than other methods, and show how GCNH mitigates the oversmoothing problem.


翻译:图神经网络 (GNNs) 很适用于同质图,即边倾向于连接相同类型节点的图。但是,在异态图上实现一致的 GNN 性能仍然是一个开放性研究问题。最近的研究提出了一些扩展标准 GNN 架构的方法,以提高异态图的性能,但是牺牲了模型简单性以换取预测准确性。但是,这些模型没有捕捉到图基本特性,如邻居标签分布,这对学习是很重要的。在本文中,我们提出了基于异质性的 GCN (GCNH) ,这是一种简单而有效的 GNN 架构,适用于异质性和同质性场景。GCNH 学习和组合节点和其邻居的分别表示,每一层使用一个学习的重要性系数来平衡中心节点和邻域的贡献。我们在八个真实世界的图和一组具有不同异质性程度的合成图上进行了广泛的实验,以展示 GCNH 的设计选择如何导致比原始 GCN 更大的改进。此外,GCNH 在四个数据集中优于复杂度高得多的最先进模型,同时在其他数据集上产生可比较的结果。最后,我们讨论和分析了 GCNH 的较低复杂度,导致可训练的参数更少和训练时间更快,以及展示了 GCNH 如何缓解过度平滑问题。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
13+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
相关论文
Arxiv
13+阅读 · 2021年7月20日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
13+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员