Driving under the influence of alcohol is a widespread phenomenon in the US where it is considered a major cause of fatal accidents. In this research we present a novel approach and concept for detecting intoxication from motion differences obtained by the sensors of wearable devices. We formalize the problem of drunkenness detection as a supervised machine learning task, both as a binary classification problem (drunk or sober) and a regression problem (the breath alcohol content level). In order to test our approach, we collected data from 30 different subjects (patrons at three bars) using Google Glass and the LG G-watch, Microsoft Band, and Samsung Galaxy S4. We validated our results against an admissible breathalyzer used by the police. A system based on this concept, successfully detected intoxication and achieved the following results: 0.95 AUC and 0.05 FPR, given a fixed TPR of 1.0. Applications based on our system can be used to analyze the free gait of drinkers when they walk from the car to the bar and vice-versa, in order to alert people, or even a connected car and prevent people from driving under the influence of alcohol.
翻译:在酒精影响下驾车是美国普遍存在的一种现象,在那里,它被认为是致命事故的一个主要原因。在这项研究中,我们提出了一种新颖的方法和概念,用以检测从可磨损装置传感器获得的运动差异中产生的中毒。我们把醉酒检测问题正式确定为一种监督的机器学习任务,既作为一种二元分类问题(脱落或清醒),又作为一种回归问题(呼吸酒精含量水平)。为了检验我们的方法,我们利用谷歌玻璃和LGG G表、微软乐队和三星银河S4从30个不同的科目(三条酒吧的电筒)收集了数据。我们用警察使用的可允许的呼吸器验证了我们的结果。一个基于这个概念的系统,成功地检测了中毒并取得了以下结果:0.95奥地利克和0.05福林普,给出了固定的TR值1.0。基于我们的系统的申请可以用来分析酒者从汽车到酒吧和反阴道的免费车位,以便提醒人们,甚至连动汽车,防止人们在酒精影响下驾车。