Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides. The cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands. For diagnostic work-up, pathologists first locate glands in the whole biopsy core, and -- if they detect cancer -- they assign a Gleason grade. This time-consuming process is subject to errors and significant inter-observer variability, despite strict diagnostic criteria. This paper proposes an automated workflow that follows pathologists' \textit{modus operandi}, isolating and classifying multi-scale patches of individual glands in whole slide images (WSI) of biopsy tissues using distinct steps: (1) two fully convolutional networks segment epithelium versus stroma and gland boundaries, respectively; (2) a classifier network separates benign from cancer glands at high magnification; and (3) an additional classifier predicts the grade of each cancer gland at low magnification. Altogether, this process provides a gland-specific approach for prostate cancer grading that we compare against other machine-learning-based grading methods.
翻译:通过在玻璃幻灯片上检查针头生物活性细胞组织来诊断病理学家和前列腺癌。 癌症的严重性和转移风险是由Gleason等级决定的。 癌症的严重性和风险由Gleason等级决定, 这是基于前列腺癌组织和形态学的得分。 在诊断工作中, 病理学家首先将腺地放置在整个生物细胞核心中, 如果他们检测到癌症, 他们就会指定Gleason等级。 这个耗时的过程尽管有严格的诊断标准, 却会发生错误和观察者之间的重大变异性。 本文提出一个自动工作流程, 遵循病理学家\ textit{ 工作方式}, 分离和分类生物心理组织整体幻灯片图象中个体基因的多尺度补丁并分类。 对于使用不同步骤的生物心理组织整体幻灯片图象( SWI) 的多级补丁, 使用不同的步骤:(1) 两种完全革命性网络的细胞皮质与Stroma 和 gland 边界分别定位; (2) 一个分解的网络在高放大化时会与癌症地区隔离; 和(3) 额外的分解器预测每个癌症在低放大度上的癌症的等级。 总而言, 这个过程提供了一种特定的分化方法, 我们比较其他的先列癌症等级方法。