For spatially dependent functional data, a generalized Karhunen-Lo\`{e}ve expansion is commonly used to decompose data into an additive form of temporal components and spatially correlated coefficients. This structure provides a convenient model to investigate the space-time interactions, but may not hold for complex spatio-temporal processes. In this work, we introduce the concept of weak separability, and propose a formal test to examine its validity for non-replicated spatially stationary functional field. The asymptotic distribution of the test statistic that adapts to potentially diverging ranks is derived by constructing lag covariance estimation, which is easy to compute for practical implementation. We demonstrate the efficacy of the proposed test via simulations and illustrate its usefulness in two real examples: China PM$_{2.5}$ data and Harvard Forest data.
翻译:对于具有空间依赖性的功能数据,普遍使用普遍Karhunen-Lo ⁇ ⁇ e}扩展法,将数据分解成一种时间组成部分和空间相关系数的添加形式,这一结构为调查空间-时间相互作用提供了一个方便的模式,但可能无法维持复杂的时空进程。在这项工作中,我们引入了薄弱分离概念,并提出了一个正式的测试,以检查其对于不可复制的空间固定功能领域的有效性。适应潜在差异等级的测试统计数据的无药可依的分布是通过计算滞后变量估计得出的,这种估计很容易计算出实际执行。我们通过模拟展示了拟议测试的功效,并在两个实际例子中展示了该测试的效用:中国PM$=2.5美元的数据和哈佛森林数据。