Software analysis, debugging, and reverse engineering have a crucial impact in today's software industry. Efficient and stealthy debuggers are especially relevant for malware analysis. However, existing debugging platforms fail to address a transparent, effective, and high-performance low-level debugger due to their detectable fingerprints, complexity, and implementation restrictions. In this paper, we present HyperDbg, a new hypervisor-assisted debugger for high-performance and stealthy debugging of user and kernel applications. To accomplish this, HyperDbg relies on state-of-the-art hardware features available in today's CPUs, such as VT-x and extended page tables. In contrast to other widely used existing debuggers, we design HyperDbg using a custom hypervisor, making it independent of OS functionality or API. We propose hardware-based instruction-level emulation and OS-level API hooking via extended page tables to increase the stealthiness. Our results of the dynamic analysis of 10,853 malware samples show that HyperDbg's stealthiness allows debugging on average 22% and 26% more samples than WinDbg and x64dbg, respectively. Moreover, in contrast to existing debuggers, HyperDbg is not detected by any of the 13 tested packers and protectors. We improve the performance over other debuggers by deploying a VMX-compatible script engine, eliminating unnecessary context switches. Our experiment on three concrete debugging scenarios shows that compared to WinDbg as the only kernel debugger, HyperDbg performs step-in, conditional breaks, and syscall recording, 2.98x, 1319x, and 2018x faster, respectively. We finally show real-world applications, such as a 0-day analysis, structure reconstruction for reverse engineering, software performance analysis, and code-coverage analysis.


翻译:软件分析、 调试和反向工程在今天的软件行业中具有关键影响。 高效和隐性调试器对于恶意软件分析特别相关。 但是, 现有的调试平台无法解决透明、 有效和高性能的低调调调试器, 因为它们可以检测到指纹、 复杂度和执行限制 。 在本文中, 我们为用户和内核应用程序的高性能和隐性调试提供超高度Dbg 辅助调试器。 要做到这一点, HyperDbg 依赖于今天的CPU 中可用的最先进的硬件功能, 如 VT- x 和扩展的页面表格。 与其他广泛使用的调试器相比, 我们使用自定义的超高端调调调调调调试器, 使其独立于OS 功能或 API 。 我们建议基于硬件的模级模级模级模模模模模和高级调试算器, 只需通过扩展的页面表来提高软化能力。 我们的10, 853 调调调试样的试样分析结果显示, 显示SydDB的比值的变速分析显示, 更快速的变速和变速分析显示, 22级的比级的变速分析显示Slo化, 度, 的比值的比值的变速性变更快的变更快的调, 度分析显示, 度分析显示, 显示, 显示的变式的比的变式的变式的变式的变式的变式的变式的变式的变式的变式的变压, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员