Superconducting optoelectronic loop neurons are a class of circuits potentially conducive to networks for large-scale artificial cognition. These circuits employ superconducting components including single-photon detectors, Josephson junctions, and transformers to achieve neuromorphic functions. To date, all simulations of loop neurons have used first-principles circuit analysis to model the behavior of synapses, dendrites, and neurons. These circuit models are computationally inefficient and leave opaque the relationship between loop neurons and other complex systems. Here we introduce a modeling framework that captures the behavior of the relevant synaptic, dendritic, and neuronal circuits at a phenomenological level without resorting to full circuit equations. Within this compact model, each dendrite is discovered to obey a single nonlinear leaky-integrator ordinary differential equation, while a neuron is modeled as a dendrite with a thresholding element and an additional feedback mechanism for establishing a refractory period. A synapse is modeled as a single-photon detector coupled to a dendrite, where the response of the single-photon detector follows a closed-form expression. We quantify the accuracy of the phenomenological model relative to circuit simulations and find that the approach reduces computational time by a factor of ten thousand while maintaining accuracy of one part in ten thousand. We demonstrate the use of the model with several basic examples. The net increase in computational efficiency enables future simulation of large networks, while the formulation provides a connection to a large body of work in applied mathematics, computational neuroscience, and physical systems such as spin glasses.
翻译:超导光电环神经元是一个极有可能有利于大型人工认知网络的电路类别。 这些电路使用超导组件, 包括单发检测器、 Josephson 连接器和变压器, 以达到神经形态功能。 到目前为止, 环环神经元的所有模拟都使用了第一原则电路分析, 以模拟突触、 dendrite 和神经元的行为。 这些电路模型是计算效率低效的, 使得循环神经元与其他复杂系统之间的关系不透明。 在这里, 我们引入了一个模型框架, 在不使用全电路方程方程式的级别上捕捉到相关神经神经神经神经元电路的行为。 在这个缩放模型中, 每个单线神经元的模拟电路路分析器都应用第一原则分析器来模拟突触觉、 循环神经元与其他复杂系统之间的关系。 一个模拟模型, 用来模拟相关的神经元与其他神经元和其他复合系统的关系。 一个模拟模型模型, 将神经元网络和神经电路电路电路电路电路电路电路的轨的大型计算系统 将在未来的精度 进行一个部分的计算, 以解到一个解到一个系统, 演示的计算中, 将一个部分的计算中, 向一个部分地路路运的计算中, 将一个解解算的计算, 以一个解解算的计算, 向一个部分进行一个部分的计算, 以一个解算的计算。