We propose two modified versions of the classical gradient ascent method to compute the capacity of finite-state channels with Markovian inputs. For the case that the channel mutual information is strongly concave in a parameter taking values in a compact convex subset of some Euclidean space, our first algorithm proves to achieve polynomial accuracy in polynomial time and, moreover, for some special families of finite-state channels our algorithm can achieve exponential accuracy in polynomial time under some technical conditions. For the case that the channel mutual information may not be strongly concave, our second algorithm proves to be at least locally convergent.
翻译:我们建议了两种经修改的古典梯度升降法,用Markovian 输入来计算有限状态频道的能力。如果频道相互信息在一个参数中非常混为一谈,在欧几里德空间的某个紧凑锥形子集中取值,那么我们的第一种算法证明,在多元时间中实现了多元准确性,此外,对于某些特殊型的有限状态频道,我们的算法在某些技术条件下可以在多元度时间中达到指数准确性。如果频道相互信息可能不是很强的组合,那么我们的第二种算法证明,至少在本地是趋同的。