Preference-based reinforcement learning (RL) provides a framework to train agents using human preferences between two behaviors. However, preference-based RL has been challenging to scale since it requires a large amount of human feedback to learn a reward function aligned with human intent. In this paper, we present Preference Transformer, a neural architecture that models human preferences using transformers. Unlike prior approaches assuming human judgment is based on the Markovian rewards which contribute to the decision equally, we introduce a new preference model based on the weighted sum of non-Markovian rewards. We then design the proposed preference model using a transformer architecture that stacks causal and bidirectional self-attention layers. We demonstrate that Preference Transformer can solve a variety of control tasks using real human preferences, while prior approaches fail to work. We also show that Preference Transformer can induce a well-specified reward and attend to critical events in the trajectory by automatically capturing the temporal dependencies in human decision-making. Code is available on the project website: https://sites.google.com/view/preference-transformer.
翻译:以特惠为基础的强化学习(RL)为在两种行为之间使用人类偏好来培训代理人提供了一个框架。然而,以特惠为基础的学习(RL)一直具有挑战性,因为它需要大量的人类反馈来学习符合人类意图的奖赏功能。在本文中,我们介绍了以人类偏好为模型的神经结构 -- -- 特惠变异器。与先前假设人类判断依据的马可维恩奖则不同,我们引入了一种基于非马尔科维安奖赏加权总和的新的优惠模式。我们随后使用一个可堆叠因果和双向自留层的变异器结构来设计拟议的优惠模式。我们证明,普惠变异器可以使用实际的人类偏好方法解决各种控制任务,而先前的方法则无法奏效。我们还表明,特惠变异器可以通过自动捕捉人类决策中的时间依赖性来诱导出精心设计的奖赏和关注轨迹中的关键事件。代码可在项目网站上查阅 https://sites.gogle.gole.com/view/pregiew-traction-transfornfornforment。</s>