Various noise models have been developed in quantum computing study to describe the propagation and effect of the noise which is caused by imperfect implementation of hardware. Identifying parameters such as gate and readout error rates are critical to these models. We use a Bayesian inference approach to identity posterior distributions of these parameters, such that they can be characterized more elaborately. By characterizing the device errors in this way, we can further improve the accuracy of quantum error mitigation. Experiments conducted on IBM's quantum computing devices suggest that our approach provides better error mitigation performance than existing techniques used by the vendor. Also, our approach outperforms the standard Bayesian inference method in such experiments.


翻译:在量子计算研究中开发了各种噪音模型,以描述因硬件执行不完善而造成的噪音的传播和影响。确定门和读出错误率等参数对于这些模型至关重要。我们对这些参数的身份后方分布采用了贝叶斯推论法,这样可以更详细地描述这些参数的特征分布。通过这样描述装置错误的特征,我们可以进一步提高量子误差的准确性。在IBM量子计算设备上进行的实验表明,我们的方法比供应商使用的现有技术提供更好的减少误差的性能。此外,我们的方法也超过了这种实验中标准的贝叶斯推论方法。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
专知会员服务
28+阅读 · 2021年8月2日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
80+阅读 · 2020年9月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
13+阅读 · 2021年5月25日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员