In this work, we investigate the analysis of generators for dynamic graphs, which are defined as graphs whose topology changes over time. We introduce a novel concept, called ''sustainability,'' to qualify the long-term evolution of dynamic graphs. A dynamic graph is considered sustainable if its evolution does not result in a static, empty, or periodic graph. To measure the dynamics of the sets of vertices and edges, we propose a metric, named ''Nervousness,'' which is derived from the Jaccard distance.As an illustration of how the analysis can be conducted, we design a parametrized generator, named D3G3 (Degree-Driven Dynamic Geometric Graphs Generator), which generates dynamic graph instances from an initial geometric graph. The evolution of these instances is driven by two rules that operate on the vertices based on their degree. By varying the parameters of the generator, different properties of the dynamic graphs can be produced.Our results show that in order to ascertain the sustainability of the generated dynamic graphs, it is necessary to study both the evolution of the order and the Nervousness for a given set of parameters.
翻译:在这项工作中, 我们调查动态图形生成器的分析, 被定义为图表, 其地形会随时间变化。 我们引入了一个叫“ 可持续性 ” 的新概念, 以限定动态图形的长期演变。 如果动态图形的演变不会导致静态、 空或周期性图形, 则该动态图形被认为是可持续的。 为了测量各组脊椎和边缘的动态, 我们建议使用一个名为“ 神经性 ” 的量度, 由 Jacccar 距离得出 。 为了说明如何进行分析, 我们设计了一个叫做 D3G3 的准美化生成器, 名为 D3G3 (Degree- Driven 动态几何图形生成器), 它从初始的几何图中生成动态图形实例。 这些情况的演化是由两种规则驱动的, 这些规则根据它们的程度在顶部上运行。 通过改变发电机的参数, 可以产生不同的动态图形特性 。 我们的结果表明, 为了确定生成的动态图形的可持续性, 有必要研究一个给定的参数的顺序和 Nervoous 。