In this paper we present a computational modeling account of an active self in artificial agents. In particular we focus on how an agent can be equipped with a sense of control and how it arises in autonomous situated action and, in turn, influences action control. We argue that this requires laying out an embodied cognitive model that combines bottom-up processes (sensorimotor learning and fine-grained adaptation of control) with top-down processes (cognitive processes for strategy selection and decision-making). We present such a conceptual computational architecture based on principles of predictive processing and free energy minimization. Using this general model, we describe how a sense of control can form across the levels of a control hierarchy and how this can support action control in an unpredictable environment. We present an implementation of this model as well as first evaluations in a simulated task scenario, in which an autonomous agent has to cope with un-/predictable situations and experiences corresponding sense of control. We explore different model parameter settings that lead to different ways of combining low-level and high-level action control. The results show the importance of appropriately weighting information in situations where the need for low/high-level action control varies and they demonstrate how the sense of control can facilitate this.
翻译:在本文中,我们提出了一个人工剂活性自我的计算模型账户。我们特别侧重于如何使代理人具备一种控制感,以及这种控制感如何在自主定位的行动中产生,进而影响行动控制。我们争辩说,这需要制定一个包含的认知模型,将自下而上的过程(感知运动学习和细微调整控制)与自上而下的过程(战略选择和决策的认知过程)结合起来。我们提出了这样一个基于预测处理和自由最小化能源原则的概念性计算结构。我们使用这一通用模型,我们描述了控制感如何在控制等级的各级形成,以及这种控制如何在不可预测的环境中支持行动控制。我们介绍了这一模型的实施以及模拟任务情景中的第一次评估,在这一情景中,自主代理者必须应对不/预知的情况和相应的控制感。我们探索不同的模型参数设置,导致以不同方式将低水平和高水平的行动控制结合起来。结果表明,在低/高水平控制的必要性如何促进这种控制的情况下,适当权衡信息的重要性。