The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence $2$-approximate) matching in $O(n)$ worst-case update time in $n$-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of {\em both} approximation ratio and worst-case update time. Specifically, we give a $(2-\Omega(1))$-approximate algorithm with $O(\sqrt{n}\sqrt[8]{m})=O(n^{3/4})$ worst-case update time in $n$-node, $m$-edge graphs. For sufficiently small constant $\epsilon>0$, no deterministic $(2+\epsilon)$-approximate algorithm with worst-case update time $O(n^{0.99})$ was known. Our second result is the first deterministic $(2+\epsilon)$-approximate (weighted) matching algorithm with $O_\epsilon(1)\cdot O(\sqrt[4]{m}) = O_\epsilon(1)\cdot O(\sqrt{n})$ worst-case update time.


翻译:受边缘更新( 插入和删除) 的动态图表中的最大匹配问题在过去几年中引起了人们的极大关注; 取得了大量近似/ 时间权衡, 民俗算法得到了改进, 民俗算法保持了最高( 因而是2美元- 近似) 匹配, 以美元为单位, 最坏情况更新时间为美元 $(n) 美元, 最坏情况更新时间为美元 美元, 以美元为单位。 我们展示了第一个比民俗算法更差的确定性算法, 即近近似比率和最坏情况更新时间 。 具体地说, 我们给出了 $( 2- omega(1) ) 美元- 最坏情况更新时间 (n. 0. 99} 美元, 我们的第二个结果是 最坏情况更新时间 = 美元( 美元- 美元= 美元) 最坏情况更新 O. (c) 最坏情况更新时间 的确定性算( 美元= 美元- 美元) 最坏的 Oral= 基 美元 亚 的 美元 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员