Computational modeling of neurodynamical systems often deploys neural networks and symbolic dynamics. A particular way for combining these approaches within a framework called vector symbolic architectures leads to neural automata. An interesting research direction we have pursued under this framework has been to consider mapping symbolic dynamics onto neurodynamics, represented as neural automata. This representation theory, enables us to ask questions, such as, how does the brain implement Turing computations. Specifically, in this representation theory, neural automata result from the assignment of symbols and symbol strings to numbers, known as G\"odel encoding. Under this assignment symbolic computation becomes represented by trajectories of state vectors in a real phase space, that allows for statistical correlation analyses with real-world measurements and experimental data. However, these assignments are usually completely arbitrary. Hence, it makes sense to address the problem question of, which aspects of the dynamics observed under such a representation is intrinsic to the dynamics and which are not. In this study, we develop a formally rigorous mathematical framework for the investigation of symmetries and invariants of neural automata under different encodings. As a central concept we define patterns of equality for such systems. We consider different macroscopic observables, such as the mean activation level of the neural network, and ask for their invariance properties. Our main result shows that only step functions that are defined over those patterns of equality are invariant under recodings, while the mean activation is not. Our work could be of substantial importance for related regression studies of real-world measurements with neurosymbolic processors for avoiding confounding results that are dependant on a particular encoding and not intrinsic to the dynamics.


翻译:神经动力系统的计算模型往往会部署神经动力系统的神经网络和符号动态。 将这些方法结合到一个称为矢量符号结构的框架内的一个特殊方法, 导致神经自闭。 我们在这个框架内追求的一个有趣的研究方向是考虑将符号动态映射到神经动力学上, 以神经动力学为代表。 这个代表理论使我们可以提出问题, 例如大脑如何应用图解计算。 具体地说, 在这个代表理论中, 神经自闭式自动数据是由将符号和符号字符串指派到数字中, 被称为 G\“ odel 编码 ” 。 在这种任务符号计算方法中, 以真实阶段空间中状态矢量矢量的轨迹为代表。 允许用真实世界的测量和实验数据进行统计性关联分析。 然而, 这些任务通常是完全任意的。 因此, 解决在这种表达中观察到的动态的哪些方面是动态的固有, 而并不是。 在这次研究中, 我们为调查的内向的内向性值和内向的内向值的内向值的内向值的内向性,, 我们的内向的内向的内向的内向的内向的内向值的内向值是不同的内向结构的内向, 。 我们的内向的内向的内向的内向的内向的内向结构的内向的内向性研究是,, 我们的内向的内向的内向的内向的内向的内向的内向的内向的内向性研究, 的内向内向性研究是, 。 我们的内向的内向的内向的内向的内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向性, 。,, 的内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向内向

0
下载
关闭预览

相关内容

【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员