Advances in computer vision and machine learning enable robots to perceive their surroundings in powerful new ways, but these perception modules have well-known fragilities. We consider the problem of synthesizing a safe controller that is robust despite perception errors. The proposed method constructs a state estimator based on Gaussian processes with input-dependent noises. This estimator computes a high-confidence set for the actual state given a perceived state. Then, a robust neural network controller is synthesized that can provably handle the state uncertainty. Furthermore, an adaptive sampling algorithm is proposed to jointly improve the estimator and controller. Simulation experiments, including a realistic vision-based lane-keeping example in CARLA, illustrate the promise of the proposed approach in synthesizing robust controllers with deep-learning-based perception.
翻译:计算机视觉和机器学习的进步使机器人能够以强大的新方式看待周围环境,但这些感知模块具有众所周知的脆弱性。 我们考虑了合成一个安全控制器的问题,尽管存在感知错误,但安全控制器是健全的。 拟议的方法根据高西亚程序构建了一个基于投入依赖噪音的州测算器。 这个测算器计算出一个基于一个感知状态的实际状态的高度自信设置。 然后,一个强大的神经网络控制器被合成,能够以可理解的方式处理国家的不确定性。 此外,还提出了一个适应性抽样算法,以共同改进测算器和控制器。模拟实验,包括在CARLA中一个现实的基于视觉的车道维护范例,展示了在将强力控制器与深层次的感知力相结合方面拟议方法的希望。