We present a proof-of-concept technique for the inverse design of electromagnetic devices motivated by the policy gradient method in reinforcement learning, named PHORCED (PHotonic Optimization using REINFORCE Criteria for Enhanced Design). This technique uses a probabilistic generative neural network interfaced with an electromagnetic solver to assist in the design of photonic devices, such as grating couplers. We show that PHORCED obtains better performing grating coupler designs than local gradient-based inverse design via the adjoint method, while potentially providing faster convergence over competing state-of-the-art generative methods. As a further example of the benefits of this method, we implement transfer learning with PHORCED, demonstrating that a neural network trained to optimize 8$^\circ$ grating couplers can then be re-trained on grating couplers with alternate scattering angles while requiring >10$\times$ fewer simulations than control cases.
翻译:我们为强化学习中受政策梯度方法驱动的电磁装置反向设计提出了一个概念验证技术,名为PHORCED(使用REINFORCE增强型设计标准进行PHORCE优化光学测试),该技术使用与电磁求解器接口的概率基因神经网络,以协助光学装置的设计,例如裁剪双胞胎。我们显示,PHORCED通过联合方法比以当地梯度为基础的反向设计更能完成双胞胎设计,同时有可能为竞合状态的基因化方法提供更快的趋同。作为这一方法的好处的又一个例子,我们与PHORCED进行了转移学习,这表明,受过训练的精化8 ⁇ circ$的神经网络可以再培训使用具有替代散射角度的模擬对齐人,同时需要超过10美元的模拟,比控制案例少10美元。