Subgraph recognition aims at discovering a compressed substructure of a graph that is most informative to the graph property. It can be formulated by optimizing Graph Information Bottleneck (GIB) with a mutual information estimator. However, GIB suffers from training instability since the mutual information of graph data is intrinsically difficult to estimate. This paper introduces a noise injection method to compress the information in the subgraphs, which leads to a novel Variational Graph Information Bottleneck (VGIB) framework. VGIB allows a tractable variational approximation to its objective under mild assumptions. Therefore, VGIB enjoys more stable and efficient training process - we find that VGIB converges 10 times faster than GIB with improved performances in practice. Extensive experiments on graph interpretation, explainability of Graph Neural Networks, and graph classification show that VGIB finds better subgraphs than existing methods.
翻译:Subgraph 识别旨在发现一个对图形属性信息最丰富的图表的压缩子结构。 它可以通过优化图形信息博尔奈克(GIB)和相互信息估计器来制定。 但是,GIB由于图形数据的相互信息本质上难以估计,因此受到培训不稳定性的影响。 本文引入了一种噪声注入方法来压缩子图中的信息,这导致了一个新的变异图形信息博尔内克(VGIB)框架。 VGIB允许在轻度假设下对它的目标进行可移动的可变近似。 因此,VGIB拥有更加稳定和高效的培训过程,我们发现VGIB比GIB比GIB在实践上更好的表现速度快10倍。 关于图形解释、图形神经网络的可解释性以及图表分类的广泛实验表明,VGIB发现比现有方法更好的子图。