Volt-var control (VVC) is the problem of operating power distribution systems within healthy regimes by controlling actuators in power systems. Existing works have mostly adopted the conventional routine of representing the power systems (a graph with tree topology) as vectors to train deep reinforcement learning (RL) policies. We propose a framework that combines RL with graph neural networks and study the benefits and limitations of graph-based policy in the VVC setting. Our results show that graph-based policies converge to the same rewards asymptotically however at a slower rate when compared to vector representation counterpart. We conduct further analysis on the impact of both observations and actions: on the observation end, we examine the robustness of graph-based policy on two typical data acquisition errors in power systems, namely sensor communication failure and measurement misalignment. On the action end, we show that actuators have various impacts on the system, thus using a graph representation induced by power systems topology may not be the optimal choice. In the end, we conduct a case study to demonstrate that the choice of readout function architecture and graph augmentation can further improve training performance and robustness.


翻译:沃尔特瓦尔控制(VVC)是通过控制电源系统中的驱动器在健康制度内操作动力分配系统的问题; 现有的工程大多采用代表动力系统的常规常规常规(用树本图绘制)作为载体来训练深强化学习(RL)政策; 我们提议了一个框架,将RL与图形神经网络结合起来,并研究VVC设置中基于图形的政策的好处和局限性; 我们的结果表明,以图形为基础的政策与矢量代表对应方相比,在同样程度上会以同样的方式获得回报,但速度却较慢。 我们进一步分析观测和行动的影响:在观测结束时,我们检查基于图形的政策对动力系统中两个典型的数据获取错误(即传感器通信故障和测量不匹配)的稳健性。 在行动结束时,我们表明,以图表为基础的政策对系统有不同的影响,因此,使用动力系统表层学引出的图形表示方式可能不是最佳选择。 最后,我们进行一项案例研究,以证明选择读出功能结构和图形增强能力可以进一步改善培训的绩效和稳健性。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员