A major problem in motor control is understanding how the brain plans and executes proper movements in the face of delayed and noisy stimuli. A prominent framework for addressing such control problems is Optimal Feedback Control (OFC). OFC generates control actions that optimize behaviorally relevant criteria by integrating noisy sensory stimuli and the predictions of an internal model using the Kalman filter or its extensions. However, a satisfactory neural model of Kalman filtering and control is lacking because existing proposals have the following limitations: not considering the delay of sensory feedback, training in alternating phases, and requiring knowledge of the noise covariance matrices, as well as that of systems dynamics. Moreover, the majority of these studies considered Kalman filtering in isolation, and not jointly with control. To address these shortcomings, we introduce a novel online algorithm which combines adaptive Kalman filtering with a model free control approach (i.e., policy gradient algorithm). We implement this algorithm in a biologically plausible neural network with local synaptic plasticity rules. This network performs system identification and Kalman filtering, without the need for multiple phases with distinct update rules or the knowledge of the noise covariances. It can perform state estimation with delayed sensory feedback, with the help of an internal model. It learns the control policy without requiring any knowledge of the dynamics, thus avoiding the need for weight transport. In this way, our implementation of OFC solves the credit assignment problem needed to produce the appropriate sensory-motor control in the presence of stimulus delay.
翻译:运动控制的一个主要问题是了解大脑在受到延迟和噪音刺激的情况下如何计划和执行适当的运动。解决这种控制问题的一个突出框架是最佳反馈控制(OFC)。OFC产生控制行动,通过整合噪音感官刺激和预测使用卡尔曼过滤器或扩展器的内部模型,优化与行为有关的标准。然而,卡曼过滤和控制的令人满意的神经模型缺乏,因为现有提案有以下限制:不考虑感知反馈延迟,在交替阶段进行培训,以及需要了解噪音变异矩阵以及系统动态。此外,这些研究大多认为卡尔曼是孤立地过滤,而不是与控制一起进行。为了解决这些缺陷,我们引入了一种新的在线算法,将适应性卡曼过滤与模型自由控制方法(即政策梯度算法)相结合。我们用一种生物上可信的神经网络和本地合成性塑料规则来实施这种算法。这个网络在不需要多个阶段,需要不同程度的升级规则或动态控制知识的情况下,在不同的级别上过滤卡尔曼。因此,我们引入一个新的在线算法, 需要一种感官的感官控制方法。 需要一种感官变化的感官的感官分析。 需要一种感官的感官的感官控制方法。