The existing network attack and defense method can be regarded as game, but most of the game only involves network domain, not multiple domain cyberspace. To address this challenge, this paper proposed a multiple domain cyberspace attack and defense game model based on reinforcement learning. We define the multiple domain cyberspace include physical domain, network domain and digital domain. By establishing two agents, representing the attacker and the defender respectively, defender will select the multiple domain actions in the multiple domain cyberspace to obtain defender's optimal reward by reinforcement learning. In order to improve the defense ability of defender, a game model based on reward randomization reinforcement learning is proposed. When the defender takes the multiple domain defense action, the reward is randomly given and subject to linear distribution, so as to find the better defense policy and improve defense success rate. The experimental results show that the game model can effectively simulate the attack and defense state of multiple domain cyberspace, and the proposed method has a higher defense success rate than DDPG and DQN.
翻译:现有的网络攻击和防御方法可以被视为游戏, 但大部分游戏只涉及网络域, 而不是多个域域网络。 为了应对这一挑战,本文建议了一个基于强化学习的多域网络空间攻击和防御游戏模式。 我们定义了多个域网络包括物理域、网络域和数字域。 通过分别代表攻击者和捍卫者建立两个代理机构, 捍卫者将在多个域网络中选择多个域行动, 以便通过强化学习获得维护者的最佳奖赏。 为了提高捍卫者的防御能力, 提议了一个基于奖励随机强化学习的游戏模式。 当捍卫者采取多域防御行动时, 奖励是随机给予的, 并以线性分布为条件, 以便找到更好的国防政策, 提高防御成功率。 实验结果表明, 游戏模式可以有效地模拟多域网络空间的攻击和防御状态, 并且拟议方法的防御成功率高于 DDPG 和 DQN 。