We study efficient optimization of the Hamiltonians of multi-species spherical spin glasses. Our results characterize the maximum value attained by algorithms that are suitably Lipschitz with respect to the disorder through a variational principle that we study in detail. We rely on the branching overlap gap property introduced in our previous work and develop a new method to establish it that does not require the interpolation method. Consequently our results apply even for models with non-convex covariance, where the Parisi formula for the true ground state remains open. As a special case, we obtain the algorithmic threshold for all single-species spherical spin glasses, which was previously known only for even models. We also obtain closed-form formulas for pure models which coincide with the $E_{\infty}$ value previously determined by the Kac-Rice formula.
翻译:暂无翻译