Exponential family models, generalized linear models (GLMs), generalized linear mixed models (GLMMs) and generalized additive models (GAMs) are widely used methods in statistics. However, many scientific applications necessitate constraints be placed on model parameters such as shape and linear inequality constraints. Constrained estimation and inference of parameters remains a pervasive problem in statistics where many methods rely on modifying rigid large sample theory assumptions for inference. We propose a flexible slice sampler Gibbs algorithm for Bayesian GLMMs and GAMs with linear inequality and shape constraints. We prove our posterior samples follow a Markov chain central limit theorem (CLT) by proving uniform ergodicity of our Markov chain and existence of the a moment generating function for our posterior distributions. We use our CLT results to derive joint bands and multiplicity adjusted Bayesian inference for nonparametric functional effects. Our rigorous CLT results address a shortcoming in the literature by obtaining valid estimation and inference on constrained parameters in finite sample settings. Our algorithmic and proof techniques are adaptable to a myriad of important statistical modeling problems. We apply our Bayesian GAM to a real data analysis example involving proportional odds regression for concussion recovery in children with shape constraints and smoothed nonparametric effects. We obtain multiplicity adjusted inference on monotonic nonparametric time effect to elucidate recovery trends in children as a function of time.


翻译:在统计中,对参数的严格估计和推断仍然是普遍的问题,因为许多方法都依赖于修改严格的大抽样理论假设来推断。我们为Bayesian GLMMs和GAMs提出了一个灵活的切片取样器 Gibc 算法,其线性不平等和形状限制。我们证明我们的后端样本遵循的是Markov链中央定理(CLT),方法是证明我们的Markov链链和为我们的远端分布创造功能的时时刻刻存在一致。我们利用我们的CLT结果得出联合带和多重调整的Bayesian推论,以得出非参数性功能效应。我们严格的CLT结果通过获得有效的估计和对有限抽样环境中的制约性参数的单一判断,弥补了文献中的缺陷。我们的算法和证据技术通过证明我们Markov链中心定律的定律定律理论限制(CLT),证明了我们Markov链链的中央定律,证明了我们Markov链的统一性定律定理理论。我们利用CLT的结果,证明了我们Markov链条链条链条链条系的统一性理论理论理论理论的统一性,证明存在一个产生统一的时空功能,为我们的后界分布的功能的功能,为我们的远端分布分布分布分布。我们利用了我们利用了我们利用了我们的远端分布式模型模型的模型的模型的模型式的模型,在儿童在恢复中,在恢复中,我们用法式的模型式后期的模型式的模型式的模型的模型,我们运用了一种不力上,我们运用了一种模型式的模型,我们用法式的模型化的模型式的模型式的模型式的模型式的模型式的模型式的模型性分析是用来分析,我们用法,我们用法,我们用来分析,我们用法式的模型式的模型式的模型式的模型式的模型式的模型式的模型式的模型,我们用法上的儿童在恢复中,我们用法,我们用法,我们用法,我们用法,我们用法的模型式的模型式的模型式的模型式的模型式的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的比。我们用法,

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2023年2月22日
Arxiv
0+阅读 · 2023年2月17日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员