项目名称: 分位数回归模型中的大偏差、偏差不等式及其应用
项目编号: No.11201356
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 何晓霞
作者单位: 武汉科技大学
项目金额: 22万元
中文摘要: 随着计算机技术的不断提高以及各种有效算法的出现,分位数回归方法在经济以及金融领域的应用越来越越广泛。相关的新模型在理论和应用方面发展迅速,成为国际上计量经济学、统计学研究前沿的一个热点。 本项目以分位数回归中的参数及非参数估计问题为研究对象,运用大偏差的理论和方法,研究其大样本性质,并将这些性质运用于金融风险测度中。具体分为以下三个方面:(1)运用各种指数不等式以及泛函不等式,考察样本分位数的大偏差、偏差不等式;(2)考察分位数回归模型(包括各种扩展模型:删失数据、具有ARCH效应、加权分位数回归以及面板数据分位数回归)中参数估计以及非参数估计的大偏差、偏差不等式;(3)将前述两方面的研究结果应用于金融风险测度中,研究各种金融风险模型中风险价值(VaR)以及条件风险价值(CVaR)的计算。 大偏差方法是研究统计问题中极限性质的一种较为有效的方法,这些性质为相应的统计推断提供了理论依据。
中文关键词: 样本分位数;分位数回归;参数估计;变量选择;生产调度
英文摘要: With the improvement of the computer technology and some effective algorithms, the approach of quantile regression becomes more and more widely used in the application in economics and finance. Theory and applications about the related new models develop rapidly, which becomes very porpular in the study of econometrics and statitics. For the objective parameter and nonparameter eatimation, the theory and method of large deviation priciple is proposed for dealing with the large sample property, which will be used to the measure of risk in finance. The proposed methodology is realized from three aspects: (1) The large deviation principle and devition inequality for the sample quantiles will be derived by using various exponential inequalities and functional inequalities; (2) The large deviation principle and deviaton inequalitied will be focused about the quantile regression models(incuding some extended models such as censored quantile regression, ARCH, weighted quantile regression; panal data quantile regression and so on); (3) Results about the aformentioned two will be used in the measure of risk in finance, especially the calculation of Value-at-Risk(VaR) and the Conditional Value-at-Risk(CVaR). The appoach of large deviation is an effective method in the research of the limit properties in the statisti
英文关键词: Sample quantile;Quantile regression;Parameter estimation;Variable selection;Production scheduling