We develop numerical methods for computing statistics of stochastic processes on surfaces of general shape with drift-diffusion dynamics $d{X}_t = a({X}_t)dt + {b}({X}_t)d{W}_t$. We consider on a surface domain $\Omega$ the statistics $u(\mathbf{x}) = \mathbb{E}^{\mathbf{x}}\left[\int_0^\tau g(X_t)dt \right] + \mathbb{E}^{\mathbf{x}}\left[f(X_\tau)\right]$ with the exit stopping time $\tau = \inf_t \{t > 0 \; |\; X_t \not\in \Omega\}$. Using Dynkin's formula, we compute statistics by developing high-order Generalized Moving Least Squares (GMLS) solvers for the associated surface PDE boundary-value problems. We focus particularly on the mean First Passage Times (FPTs) given by the special case $f = 0,\, g = 1$ with $u(\mathbf{x}) = \mathbb{E}^{\mathbf{x}}\left[\tau\right]$. We perform studies for a variety of shapes showing our methods converge with high-order accuracy both in capturing the geometry and the surface PDE solutions. We then perform studies showing how FPTs are influenced by the surface geometry, drift dynamics, and spatially dependent diffusivities.
翻译:我们开发了计算一般形状表面的随机进程统计数据的数字方法, 以漂浮反射动态 $d{X}t= a( {X} t) dt + {b} ({X} t}d{W}t$。 我们考虑在表面域$( Omega$) 统计 $u( mathbf{x}) = mathb{ = mathb{x} left[ int_ 0} tau g( X_ t) dt\right] +\ mathb{ = a (xxx) = a(x) a(x) =(x) a(x) a(x) =(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a(x) a( leg) a( leg) a(s) a( leg) a(us) a) a( leg) a( lex) a(us) a) a(s) a(us) a(ro) a(us) as) as) leg) a(us) a(us) a(us) a (us) a(l) a(l) a(us) a(us) as) as) ac) ac) as) a(leg) as) a(l) ax) acs) ac) as) as) a(t) as) a(s) a(s) a(x) a(s) as) as) a(s) as) as) as) as) as) as as) as) as) as) as) as) as) as as as) as) as) as as as as as as ass as as as as as a(tleaxaxaxax a(axaxassss