We develop a nonparametric extension of the sequential generalized likelihood ratio (GLR) test and corresponding time-uniform confidence sequences for the mean parameter of a univariate distribution. By utilizing a geometric interpretation of the GLR statistic, we derive a simple upper bound on the probability that it exceeds any prespecified boundary. Using time-uniform boundary-crossing inequalities, we carry out a unified nonasymptotic analysis of the sample complexity of one-sided and open-ended tests over nonparametric classes of distributions (including sub-Gaussian, sub-exponential, sub-gamma, and exponential families). We present a flexible and practical method to construct time-uniform confidence sequences that are easily tunable to be uniformly close to the pointwise Chernoff bound over any target time interval.
翻译:我们开发了连续普遍概率比(GLR)测试的非参数扩展,以及单体分布平均参数的相应时间统一信任序列。通过对 GLR 统计数据进行几何解释,我们得出一个简单的上限,以其超过任何预定边界的概率为准。我们使用时间一致的跨边界不平等,对单面和不限的分布类别(包括亚加西语、亚爆炸性、亚伽马语和指数式家庭)的单向和不限测试的样本复杂性进行统一的非同步分析。 我们提出了一个灵活而实用的方法来构建时间统一的信任序列,这些序列很容易在任何目标时间间隔内统一接近切诺夫点。