In this paper we propose and investigate a general approach to constructing local energy-preserving algorithms which can be of arbitrarily high order in time for solving Hamiltonian PDEs. This approach is based on the temporal discretization using continuous Runge-Kutta-type methods, and the spatial discretization using pseudospectral methods or Gauss--Legendre collocation methods. The local energy conservation law of our new schemes is analyzed in detail. The effectiveness of the novel local energy-preserving integrators is demonstrated by coupled nonlinear Schr\"odinger equations and 2D nonlinear Schr\"odinger equations with external fields. Our new schemes are compared with some classical multi-symplectic and symplectic schemes in numerical experiments. The numerical results show the remarkable \emph{long-term} behaviour of our new schemes.
翻译:在本文中,我们提出并调查了构建本地节能算法的一般方法,这种算法在解决汉密尔顿式PDEs时可能具有任意的高度顺序。 这种方法基于使用连续的龙格- 库塔型方法和使用假光谱方法或高斯- 莱根德尔合用法的空间离散法。 详细分析了我们新计划中的本地节能法。 新型本地节能集能器的有效性通过结合的非线性Schr\" odinger 方程式和2D 非线性Schr\" oder 方程式与外部领域来证明。 我们的新方案与数字实验中的一些经典的多中位性和共位化方案进行了比较。 数字结果显示了我们新方案惊人的emph{ long- ternet} 行为。