Graph Convolutional Networks (GCNs) have received significant attention from various research fields due to the excellent performance in learning graph representations. Although GCN performs well compared with other methods, it still faces challenges. Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs. Therefore, motivated by an urgent need in terms of efficiency and scalability in training GCN, sampling methods have been proposed and achieved a significant effect. In this paper, we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN. To highlight the characteristics and differences of sampling methods, we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories. Finally, we discuss some challenges and future research directions of the sampling methods.


翻译:由于学习图示的出色表现,各种研究领域对革命网络(GCN)给予了极大关注,尽管GCN与其他方法相比表现良好,但仍面临挑战;以常规方式培训大型图表的GCN模型需要很高的计算和储存费用;因此,由于培训GCN的效益和可缩放性方面的迫切需要,提出了采样方法,并取得了显著效果;在本文件中,我们根据采样机制对采样方法进行了分类,为有效培训GCN提供了抽样方法的全面调查;为了突出取样方法的特点和差异,我们在每个类别中进行详细比较,并进一步对各类采样方法进行总体比较分析;最后,我们讨论了采样方法的一些挑战和今后的研究方向。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
49+阅读 · 2020年12月16日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
相关资讯
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
19+阅读 · 2020年12月23日
Arxiv
49+阅读 · 2020年12月16日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
5+阅读 · 2017年4月12日
Top
微信扫码咨询专知VIP会员