The meaning of a word often varies depending on its usage in different domains. The standard word embedding models struggle to represent this variation, as they learn a single global representation for a word. We propose a method to learn domain-specific word embeddings, from text organized into hierarchical domains, such as reviews in an e-commerce website, where products follow a taxonomy. Our structured probabilistic model allows vector representations for the same word to drift away from each other for distant domains in the taxonomy, to accommodate its domain-specific meanings. By learning sets of domain-specific word representations jointly, our model can leverage domain relationships, and it scales well with the number of domains. Using large real-world review datasets, we demonstrate the effectiveness of our model compared to state-of-the-art approaches, in learning domain-specific word embeddings that are both intuitive to humans and benefit downstream NLP tasks.


翻译:一个单词的含义往往因其在不同领域的使用而不同。 标准嵌入模式的字词在努力代表这一差异, 因为它们学习了一个单词的全球代表。 我们提出了一个方法来学习从按等级划分的文字中具体域的字嵌入, 比如在电子商务网站上的审查, 产品遵循分类法。 我们结构化的概率模型允许同一字的矢量表达方式在分类学的遥远域中相互漂移, 以适应其特定域的含义。 通过学习一套特定域的字表达方式, 我们的模式可以共同利用域际关系, 并将它与域数相匹配。 我们使用大型真实世界审查数据集, 展示了我们模型与最新技术方法相比的有效性, 在学习对人来说不切实际的、对下游国家语言方案任务有益的特定域嵌入方面。

0
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
29+阅读 · 2020年3月16日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
9+阅读 · 2019年4月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员