We present a novel method for placing a 3D human animation into a 3D scene while maintaining any human-scene interactions in the animation. We use the notion of computing the most important meshes in the animation for the interaction with the scene, which we call "keyframes." These keyframes allow us to better optimize the placement of the animation into the scene such that interactions in the animations (standing, laying, sitting, etc.) match the affordances of the scene (e.g., standing on the floor or laying in a bed). We compare our method, which we call PAAK, with prior approaches, including POSA, PROX ground truth, and a motion synthesis method, and highlight the benefits of our method with a perceptual study. Human raters preferred our PAAK method over the PROX ground truth data 64.6\% of the time. Additionally, in direct comparisons, the raters preferred PAAK over competing methods including 61.5\% compared to POSA.
翻译:我们提出了一个将3D人类动画放入3D场景的新颖方法,同时在动画中保持任何人类的相互作用。我们使用动画中计算与场景互动的最重要线条的概念,我们称之为“关键框架 ” 。 这些关键框架使我们能够更好地优化动画放入场景的位置,使动画(立体、躺着、坐着等)的相互作用与场景的承受力相匹配(例如,站在地板上或躺在床上)。我们比较了我们称为PAAAK的方法,我们称之为PAAK的方法,与先前的方法进行了比较,包括POSA、PROX地面真相和运动合成方法,并用一种感知性研究来突出我们方法的优点。人类计分器更喜欢我们的PAAAK方法,而不是当时的PROX地面真相数据64.6 ⁇ 。此外,在直接比较中,评级者更喜欢PAAAK的方法,包括与POSA相比,包括61.5 ⁇ 。