In this paper, we provide new approximation algorithms for dynamic variations of the longest increasing subsequence (\textsf{LIS}) problem, and the complementary distance to monotonicity (\textsf{DTM}) problem. In this setting, operations of the following form arrive sequentially: (i) add an element, (ii) remove an element, or (iii) substitute an element for another. At every point in time, the algorithm has an approximation to the longest increasing subsequence (or distance to monotonicity). We present a $(1+\epsilon)$-approximation algorithm for \textsf{DTM} with polylogarithmic worst-case update time and a constant factor approximation algorithm for \textsf{LIS} with worst-case update time $\tilde O(n^\epsilon)$ for any constant $\epsilon > 0$.% $n$ in the runtime denotes the size of the array at the time the operation arrives. Our dynamic algorithm for \textsf{LIS} leads to an almost optimal algorithm for the Erd\"{o}s-Szekeres partitioning problem. Erd\"{o}s-Szekeres partitioning problem was introduced by Erd\"{o}s and Szekeres in 1935 and was known to be solvable in time $O(n^{1.5}\log n)$. Subsequent work improve the runtime to $O(n^{1.5})$ only in 1998. Our dynamic \textsf{LIS} algorithm leads to a solution for Erd\"{o}s-Szekeres partitioning problem with runtime $\tilde O_{\epsilon}(n^{1+\epsilon})$ for any constant $\epsilon > 0$.
翻译:在本文中, 我们为最大递增子序列的动态变化提供新的近似算法 { textsf{ LIS} 问题, 以及单调( textsf{ DTM} ) 问题的补充距离 。 在此设置中, 以下窗体的操作会依次到达 : (i) 添加一个元素, (ii) 删除一个元素, 或 (iii) 替换一个元素 。 在每一个时间点, 该算法会接近 最大递增子序列( 或单顺序的距离 ) 。 我们为\ textsf{ DTM} 提供 $ ( 1 { ⁇ epsel) $( 1 { epsil) 的合比 和 单调( texts\ n35} 动态更新时间和恒定系数值的算法 。 在运行时, 运行中 Slus\\\\ rodeal 的动态算法是 Eral_ 。