Consider the following hat guessing game. A bear sits on each vertex of a graph $G$, and a demon puts on each bear a hat colored by one of $h$ colors. Each bear sees only the hat colors of his neighbors. Based on this information only, each bear has to guess $g$ colors and he guesses correctly if his hat color is included in his guesses. The bears win if at least one bear guesses correctly for any hat arrangement. We introduce a new parameter - fractional hat chromatic number $\hat{\mu}$, arising from the hat guessing game. The parameter $\hat{\mu}$ is related to the hat chromatic number which has been studied before. We present a surprising connection between the hat guessing game and the independence polynomial of graphs. This connection allows us to compute the fractional hat chromatic number of chordal graphs in polynomial time, to bound fractional hat chromatic number by a function of maximum degree of $G$, and to compute the exact value of $\hat{\mu}$ of cliques, paths, and cycles.
翻译:考虑以下的帽子猜测游戏。 一只熊坐在一张G$图的每个顶端上, 一只恶魔在每只头顶上戴着一张以美元为颜色的帽子。 每只熊只看到邻居的帽子颜色。 基于此信息, 每只熊必须猜测$g$颜色, 他猜他的帽子颜色是否包含在他的猜测中。 如果至少有一个人猜得对帽子安排来说是正确的, 熊会赢。 我们引入一个新的参数 - 由帽子猜测游戏产生的分数帽子色谱号$\hat_ mu} 。 参数$\hat_ mu} 与以前研究过的帽子色谱数有关。 我们展示了帽子猜测游戏和图的独立多面图的多面体数之间令人惊讶的联系。 这个连接使我们能够计算多面时间的色谱图的分数, 以最大值 $G$为单位的分数, 并计算 clique、 路径和周期的美元正值 。