This paper creates a novel method of deep neural style transfer by generating style images from freeform user text input. The language model and style transfer model form a seamless pipeline that can create output images with similar losses and improved quality when compared to baseline style transfer methods. The language model returns a closely matching image given a style text and description input, which is then passed to the style transfer model with an input content image to create a final output. A proof-of-concept tool is also developed to integrate the models and demonstrate the effectiveness of deep image style transfer from freeform text.
翻译:本文创建了一种新型的深层神经风格传输方法, 其方法是从自由格式的用户文本输入中生成样式图像。 语言模型和样式传输模型形成一个无缝管道, 与基线样式传输方法相比, 能够产生类似的损耗和质量提高的输出图像。 语言模型返回一个与样式文本和描述输入相匹配的图像, 然后通过输入内容图像传递到样式传输模型, 以创建最终输出。 还开发了一个验证概念工具, 以整合模型, 并演示从自由格式文本中深度图像样式传输的有效性 。