Invertible networks have various benefits for image denoising since they are lightweight, information-lossless, and memory-saving during back-propagation. However, applying invertible models to remove noise is challenging because the input is noisy, and the reversed output is clean, following two different distributions. We propose an invertible denoising network, InvDN, to address this challenge. InvDN transforms the noisy input into a low-resolution clean image and a latent representation containing noise. To discard noise and restore the clean image, InvDN replaces the noisy latent representation with another one sampled from a prior distribution during reversion. The denoising performance of InvDN is better than all the existing competitive models, achieving a new state-of-the-art result for the SIDD dataset while enjoying less run time. Moreover, the size of InvDN is far smaller, only having 4.2% of the number of parameters compared to the most recently proposed DANet. Further, via manipulating the noisy latent representation, InvDN is also able to generate noise more similar to the original one. Our code is available at: https://github.com/Yang-Liu1082/InvDN.git.
翻译:不可逆的网络在图像解析方面有多种好处,因为它们是轻量的、无信息损失的和在反向调整期间的记忆保存。 但是,应用不可逆的模式来消除噪音具有挑战性,因为输入是吵闹的,反向输出是干净的,遵循两种不同的分布方式。 我们建议了一个不可逆的解密网络, InvDN 来应对这一挑战。 InvDN 将噪音输入转换成低分辨率的清洁图像和含有噪音的潜在代表方式。 为了丢弃噪音并恢复清洁图像, InvDN 将噪音潜隐含的表示方式替换为从先前的再版中提取的另一个样本。 InvDN 的取消性能优于所有现有的竞争模式,在SIDDD数据集的运行时间较少的情况下实现新的最新结果。 此外, InvDN 的大小要小得多, 与最近提议的 DANet 相比, 仅拥有4. 2%的参数。 此外, InvDN 也能够产生更相似的噪音。 我们的代码可以在 http://Yggiu/Ingiu 。