Compared with the traditional collaborative filtering methods, the graph convolution network can explicitly model the interaction between the nodes of the user-item bipartite graph and effectively use higher-order neighbors, which enables the graph neural network to obtain more effective embeddings for recommendation, such as NGCF And LightGCN. However, its representations is very susceptible to the noise of interaction. In response to this problem, SGL explored the self-supervised learning on the user-item graph to improve the robustness of GCN. Although effective, we found that SGL directly applies SimCLR's comparative learning framework. This framework may not be directly applicable to the scenario of the recommendation system, and does not fully consider the uncertainty of user-item interaction.In this work, we aim to consider the application of contrastive learning in the scenario of the recommendation system adequately, making it more suitable for recommendation task. We propose a supervised contrastive learning framework to pre-train the user-item bipartite graph, and then fine-tune the graph convolutional neural network. Specifically, we will compare the similarity between users and items during data preprocessing, and then when applying contrastive learning, not only will the augmented views be regarded as the positive samples, but also a certain number of similar samples will be regarded as the positive samples, which is different from SimCLR who treats other samples in a batch as negative samples. We term this learning method as Supervised Contrastive Learning(SCL) and apply it on the most advanced LightGCN. In addition, in order to consider the uncertainty of node interaction, we also propose a new data augment method called node replication.


翻译:与传统的合作过滤方法相比,图变网络可以明确地模拟用户-项目双偏版图节点之间的相互作用,并有效地使用高阶邻居,从而使图形神经网络能够更有效地嵌入建议,如NGCF和LightGCN。然而,其表述非常容易受到互动噪音的影响。针对这一问题,SGL探索了用户-项目图上的自监督学习框架,以提高GCN的稳健性。虽然有效,但我们发现SGL直接应用SimCL的比较学习框架。这个框架可能不直接适用于建议系统的不确定性设想,也没有充分考虑到用户-项目互动的不确定性。在这项工作中,我们旨在考虑在建议系统情景中应用对比性学习学习,使其更适合建议任务。我们提出了用户-项目双偏重图形前的对比学习框架,然后对图形变色网络进行微调。具体地,我们将比较用户和项目之间的类似性关系,在样本处理前的对比中,我们并不将这种对比性关系视为某种正比值,而是将某种正比值视为某种正比值的样本中,我们也会认为某种正比值。

0
下载
关闭预览

相关内容

专知会员服务
89+阅读 · 2021年6月29日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
11+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
专知会员服务
89+阅读 · 2021年6月29日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
11+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员