Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems. Recently, some purely quantum machine learning models were proposed such as the quantum convolutional neural networks (QCNN) to perform classification on quantum data. However, all of the existing QML models rely on centralized solutions that cannot scale well for large-scale and distributed quantum networks. Hence, it is apropos to consider more practical quantum federated learning (QFL) solutions tailored towards emerging quantum network architectures. Indeed, developing QFL frameworks for quantum networks is critical given the fragile nature of computing qubits and the difficulty of transferring them. On top of its practical momentousness, QFL allows for distributed quantum learning by leveraging existing wireless communication infrastructure. This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner. First, given the lack of existing quantum federated datasets in the literature, the proposed framework begins by generating the first quantum federated dataset, with a hierarchical data format, for distributed quantum networks. Then, clients sharing QCNN models are fed with the quantum data to perform a classification task. Subsequently, the server aggregates the learnable quantum circuit parameters from clients and performs federated averaging. Extensive experiments are conducted to evaluate and validate the effectiveness of the proposed QFL solution. This work is the first to combine Google's TensorFlow Federated and TensorFlow Quantum in a practical implementation.


翻译:量子机器学习( QML) 已经成为一个充满希望的领域, 依靠量子计算的发展, 探索大型复杂的机器学习问题。 最近, 提出了一些纯粹量子机器学习模型, 如量子革命神经网络(QCNN), 以进行量子数据分类; 然而, 现有的所有量子机器学习模型都依靠中央化的解决方案, 大规模分布量子网络的规模不高, 因此, 考虑更实际的量子联邦化学习( QFL) 解决方案, 适合新兴量子网络结构。 事实上, 建立量子网络的QFL框架非常关键, 因为计算qubits的脆弱性质和传输困难。 除了其实际的重大意义外, QFLF 允许利用现有无线通信基础设施进行量子神经神经神经网络的分类; 本文提出第一个完全量子联邦化学习的学习框架, 从而以分散方式分享量子电路参数。 首先, 由于缺乏量联邦化数据网络, 以首次量子化数据化的量子网络为首个量子网络,, 以可量级化的量子公司的量子公司的量子公司 和直流数据分类, 进行量级化的计算 。 和直径级化的量子服务器的量子服务器的量子服务器的运行的运行的计算, 运行的计算, 运行的量子服务器的量子计算, 运行的计算, 的量子交易的量子计算, 进行量子计算, 进行量子公司进行量子交易的量子交易的计算。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Quantum Fair Machine Learning
Arxiv
0+阅读 · 2021年7月22日
Arxiv
0+阅读 · 2021年7月20日
Arxiv
43+阅读 · 2019年12月20日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员