With the rapid growth of qubit numbers and coherence times in quantum hardware technology, implementing shallow neural networks on the so-called Noisy Intermediate-Scale Quantum (NISQ) devices has attracted a lot of interest. Many quantum (convolutional) circuit ansaetze are proposed for grayscale images classification tasks with promising empirical results. However, when applying these ansaetze on RGB images, the intra-channel information that is useful for vision tasks is not extracted effectively. In this paper, we propose two types of quantum circuit ansaetze to simulate convolution operations on RGB images, which differ in the way how inter-channel and intra-channel information are extracted. To the best of our knowledge, this is the first work of a quantum convolutional circuit to deal with RGB images effectively, with a higher test accuracy compared to the purely classical CNNs. We also investigate the relationship between the size of quantum circuit ansatz and the learnability of the hybrid quantum-classical convolutional neural network. Through experiments based on CIFAR-10 and MNIST datasets, we demonstrate that a larger size of the quantum circuit ansatz improves predictive performance in multiclass classification tasks, providing useful insights for near term quantum algorithm developments.
翻译:在量子硬件技术中,量子数字的迅速增长和一致性时间的迅速增长,在所谓的Noisy中级量子(NISQ)设备上实施浅神经网络,吸引了许多人的兴趣。许多量子(革命)电回脉冲屏建议用于灰色图像分类任务,并取得了有希望的经验性结果。然而,在对RGB图像应用这些脉冲时,用于愿景任务的频道内信息没有被有效提取。在本文件中,我们提议了两种量子电路反射器,以模拟RGB图像的演动操作,这在如何提取频道间和频道内信息方面有所不同。据我们所知,这是量子电回路首次有效处理RGB图像的工作,与纯古典CNN相比,测试精度更高。我们还调查了量子电路的大小与混合量子级神经网络的可学习性之间的关系。我们通过CRFAR-10和MIST数据集的实验,以不同的方式提出了不同的方式,我们从我们所知的角度来看,这是量子电流的首次工作,以便有效地处理RGB图像的更大程度的定量分析。