Causal inference methods are widely applied in various decision-making domains such as precision medicine, optimal policy and economics. Central to causal inference is the treatment effect estimation of intervention strategies, such as changes in drug dosing and increases in financial aid. Existing methods are mostly restricted to the deterministic treatment and compare outcomes under different treatments. However, they are unable to address the substantial recent interest of treatment effect estimation under stochastic treatment, e.g., "how all units health status change if they adopt 50\% dose reduction". In other words, they lack the capability of providing fine-grained treatment effect estimation to support sound decision-making. In our study, we advance the causal inference research by proposing a new effective framework to estimate the treatment effect on stochastic intervention. Particularly, we develop a stochastic intervention effect estimator (SIE) based on nonparametric influence function, with the theoretical guarantees of robustness and fast convergence rates. Additionally, we construct a customised reinforcement learning algorithm based on the random search solver which can effectively find the optimal policy to produce the greatest expected outcomes for the decision-making process. Finally, we conduct an empirical study to justify that our framework can achieve significant performance in comparison with state-of-the-art baselines.


翻译:因果关系推断方法广泛应用于各种决策领域,如精密医学、最佳政策和经济学等。因果关系推断的核心是干预战略的治疗效果估计,例如药物剂量的变化和财政援助的增加。现有方法大多限于确定治疗,比较不同治疗下的结果。然而,它们无法解决最近在非诊断性治疗下对治疗效果估计的重大兴趣,例如,“如果采用50 ⁇ 剂量削减,所有单位的健康状况都会发生变化。”换句话说,它们缺乏提供精细的治疗效果估计以支持正确决策的能力。在我们的研究中,我们通过提出一个新的有效框架来估计治疗对诊断性干预的影响,推进因果关系研究。特别是,我们根据非诊断性影响功能开发了一种随机干预效应估计(SIE),其理论保证是稳健和快速趋同率。此外,我们根据随机搜索解答器来定制强化学习算法,它能够有效地找到最佳政策,从而产生我们进行重大实验性决策性研究的预期结果。最后,我们可以用一个实验性基准研究来证明我们进行重大实验性研究。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员