This paper studies how to introduce viewpoint-invariant feature representations that can help action recognition and detection. Although we have witnessed great progress of action recognition in the past decade, it remains challenging yet interesting how to efficiently model the geometric variations in large scale datasets. This paper proposes a novel Spatial-Temporal Alignment Network (STAN) that aims to learn geometric invariant representations for action recognition and action detection. The STAN model is very light-weighted and generic, which could be plugged into existing action recognition models like ResNet3D and the SlowFast with a very low extra computational cost. We test our STAN model extensively on AVA, Kinetics-400, AVA-Kinetics, Charades, and Charades-Ego datasets. The experimental results show that the STAN model can consistently improve the state of the arts in both action detection and action recognition tasks. We will release our data, models and code.


翻译:本文研究如何引入有助于行动识别和检测的视角差异特征表现。尽管我们在过去十年中目睹了行动识别的巨大进展,但如何有效地模拟大规模数据集中的几何差异仍具有挑战性,但令人感兴趣的是,本文件提出了一个新的空间-时空协调网络(STAN),目的是学习行动识别和行为检测的几何差异表现。STAN模型非常轻巧和通用,可以以非常低的计算成本将它插入ResNet3D和Llow Fast等现有行动识别模型中。我们将在AVA、Kindics-400、AVA-Kinetics、Charades和Charades-Ego数据集中广泛测试我们的STAN模型。实验结果表明,STAN模型可以在行动识别和行动识别任务中不断改善艺术状况。我们将发布我们的数据、模型和代码。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年1月24日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关资讯
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员