For effective human-robot teaming, it is importantfor the robots to be able to share their visual perceptionwith the human operators. In a harsh remote collaborationsetting, however, it is especially challenging to transfer a largeamount of sensory data over a low-bandwidth network in real-time, e.g., for the task of 3D shape reconstruction given 2Dcamera images. To reduce the burden of data transferring, datacompression techniques such as autoencoder can be utilized toobtain and transmit the data in terms of latent variables in acompact form. However, due to the low-bandwidth limitation orcommunication delay, some of the dimensions of latent variablescan be lost in transit, degenerating the reconstruction results.Moreover, in order to achieve faster transmission, an intentionalover compression can be used where only partial elements ofthe latent variables are used. To handle these incomplete datacases, we propose a method for imputation of latent variableswhose elements are partially lost or manually excluded. Toperform imputation with only some dimensions of variables,exploiting prior information of the category- or instance-levelis essential. In general, a prior distribution used in variationalautoencoders is achieved from all of the training datapointsregardless of their labels. This type of flattened prior makes itdifficult to perform imputation from the category- or instance-level distributions.
翻译:对于有效的人类机器人团队化来说,机器人必须能够与人类操作者分享其视觉感知。然而,在严酷的远程协作中,实时将大量感官数据传输给低带宽网络,例如用于2Dcamera 图像的 3D 形状重建任务。为了减轻数据传输负担,可以使用自动编码等数据压缩技术,以复合形式保存和传输潜在变量的数据。然而,由于低带宽限制或通信延迟,潜在变量的某些层面在中转过程中会丢失,从而降低重建成果。此外,为了实现更快的传输,只能在使用潜在变量部分要素的地方使用有意的超压缩。为了处理这些不完整的数据框,我们建议一种将部分丢失或人工排除部分潜在变量的隐含性变量进行估算的方法。在实例中,仅以某些变量的形式进行整合,探索先前的隐性变量,从先前的分类类别或先前的分类类别中获取的信息,从先前的分类的分类类型中产生固定性的变化。在先前的类别中,从先前的类别或先前的类别中,从先前的分类的分类中实现的分类式数据等级分配。