Understanding the behaviour of environmental extreme events is crucial for evaluating economic losses, assessing risks, health care and many other aspects. In the spatial context, relevant for environmental events, the dependence structure plays a central rule, as it influence joined extreme events and extrapolation on them. So that, recognising or at least having preliminary informations on patterns of these dependence structures is a valuable knowledge for understanding extreme events. In this study, we address the question of automatic recognition of spatial Asymptotic Dependence (AD) versus Asymptotic independence (AI), using Convolutional Neural Network (CNN). We have designed an architecture of Convolutional Neural Network to be an efficient classifier of the dependence structure. Upper and lower tail dependence measures are used to train the CNN. We have tested our methodology on simulated and real data sets: air temperature data at two meter over Iraq land and Rainfall data in the east cost of Australia.
翻译:了解环境极端事件的行为对于评估经济损失、评估风险、保健和其他许多方面至关重要。在空间方面,与环境事件相关,依赖性结构起着中心规则的作用,因为它影响到极端事件和外推。因此,承认或至少初步了解这些依赖性结构的模式是了解极端事件的宝贵知识。在本研究中,我们利用进化神经网络(CNN),探讨自动承认空间零食依赖性(AD)相对于亚性依赖性独立(AI)的问题。我们设计了一个革命神经网络架构,以有效地分类依赖性结构。采用了上下尾依赖性措施来训练CNN。我们测试了模拟和真实数据集的方法:在伊拉克陆地两米上空的空气温度数据以及澳大利亚东部的降雨量数据。