There is a growing interest in cactus cultivation because of numerous cacti uses from houseplants to food and medicinal applications. Various diseases impact the growth of cacti. To develop an automated model for the analysis of cactus disease and to be able to quickly treat and prevent damage to the cactus. The Faster R-CNN and YOLO algorithm technique were used to analyze cactus diseases automatically distributed into six groups: 1) anthracnose, 2) canker, 3) lack of care, 4) aphid, 5) rusts and 6) normal group. Based on the experimental results the YOLOv5 algorithm was found to be more effective at detecting and identifying cactus disease than the Faster R-CNN algorithm. Data training and testing with YOLOv5S model resulted in a precision of 89.7% and an accuracy (recall) of 98.5%, which is effective enough for further use in a number of applications in cactus cultivation. Overall the YOLOv5 algorithm had a test time per image of only 26 milliseconds. Therefore, the YOLOv5 algorithm was found to suitable for mobile applications and this model could be further developed into a program for analyzing cactus disease.


翻译:由于从家庭植物到食物和药用用途的多种仙人掌用途,对仙人掌种植的兴趣日益浓厚。各种疾病影响仙人掌的生长。为了开发一个分析仙人掌疾病的自动模型,并能够迅速治疗和预防对仙人掌的损害。快速R-CNN和YOLO算法技术被用来分析六组仙人掌疾病:1)炭疽,2,罐头,3)缺乏护理,4,甲虫,5,生锈和6)正常组。根据实验结果,发现YOLOv5算法比更快的R-CNN算法在检测和识别仙人掌疾病方面更加有效。使用YOLOv5算法进行数据培训和测试的结果是89.7%的精确度和98.5%的精确度(回调),这足以进一步应用于仙人掌的种植。总体而言,YOLOv5算法的测试时间为每图26毫秒。因此,YOLO5算法可以进一步开发一个适合移动应用的模型。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Is Intelligence Artificial?
Arxiv
0+阅读 · 2021年7月29日
Arxiv
5+阅读 · 2020年10月14日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员